
TEPLOTECHNA DIS your refractory lining supplier

Radomír Janisch

HISTORY

- Company Teplotechna DIS s.r.o came into existence in 1998 from former employees of state company Teplotechna PKZ
- Teplotechna DIS is longstanding, stable, and has skilled employees, who have longtime experiences from the former state company Teplotechna PKZ in the field of design as well as in the fields of execution of all offered activities.
- Our experienced team is consisting of:
 - technical-administration stuff
 - designers
 - qualified workers of fireclay works, welding works of auxiliary construction and others
 - according to a need we are able to provide on bigger projects others experienced bricklayers, carpenters and locksmiths.

CUSTOMERS

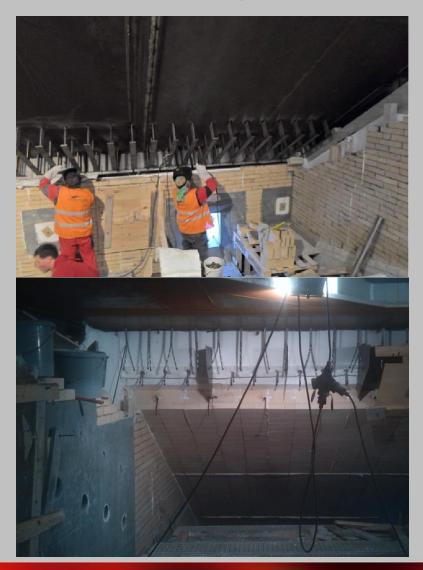
Cement plants

REFRACTORY LINING- CEMENT PLANTS

CUSTOMERS

• BOILERS

BRICK LINING- BOILERS



CASTABLE LINING- BOILERS

CUSTOMERS

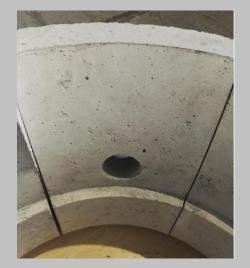
CHEMICAL APARATES

REFRACTORY LINING-CHEMICAL

REFRACTORY LINING- CHEMICAL

CASTABLE LINING

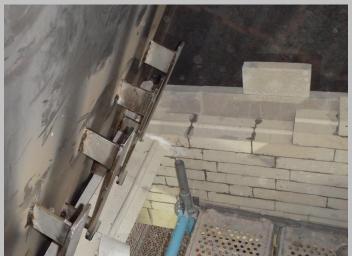
- Main suppliers:
 - Průmyslová keramika, spol. s r.o.
 - Calerys GMBH
 - Žárohmoty, spol. s r.o.
 - Others (Thermal ceramics, Gouda)
 - Closer cooperation with Průmyslová keramika- 60km from our headquarters, flexibility,

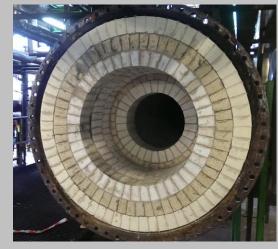


PRECAST SHAPE

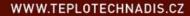
BRICK LINING

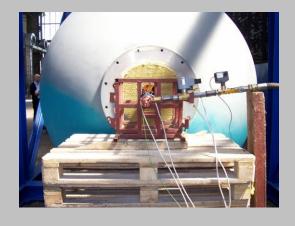
- Main suppliers
 - PD Refractories
 - Peril production/Mosconi
 - Slovmag



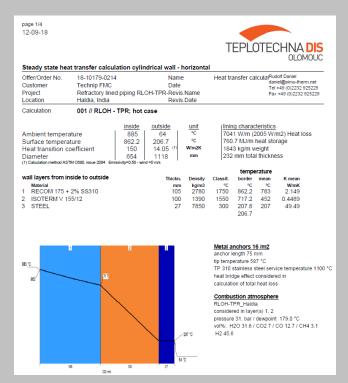


BRICK LINING





DRY OUT



OTHERS

- Thermal heat calculation- Simu-therm software
- Calculation of expansion joints

Input data (average case)						
Mean temperature of dense layer			-		777	
Mean temperature of insulation layer Mean temperature of steel vessel			:		193	
mean temperature of steel vesser		13	-			
Dense layer - RECOM 175						
Coeficient of reversible ther. exp.			=	0,00	0007	
Permanent linear change (PLC after 800 °C)		PLC ₁	=		-0,1	%
Insulation layer - ISOTERM V 155/12						
Coeficient of reversible ther, exp.		α_2	=	0,00		
Permanent linear change (PLC after 800 °C)		PLC2			-0,1	%
Steel vessel						
Coeficient of reversible ther. exp.		α_3	=	0,00	0012	-
Lenght of lining		lo =			1970	mm
Echigint of mining		- 0			1370	
Width of expansion joints in dense layer						mm
Count of exp. joints in dense layer		exp ₁ =				- mm
		exp ₁ =	5-2	=	10	mm
Width of expansion joints in insulation lay-	er				0	mm
Count of exp. joints in insulation layer						-
Calculation		exp ₂ =			0	mm
Calculation Thermal expansion of dense layer						
$\Delta I_{dense} = \alpha_1 * \Delta t_1 * I_0 = 0,000007 *$	777	*	1970	-	10,7	mm
	_					
Permanent linear change (PLC) of dense laye ΔPLC ₁ = PLC ₁ * I ₀ = -0.001 *	1970				-1.97	mm
Thermal expansion of dense layer						
$\Delta I_{insul} = \alpha_2 * \Delta t_2 * I_0 = 0,000003 *$	444	*	1970	=	2,6	mm
Permanent linear change (PLC) of insulation I	aver	after firir	na			
	1970		14	=	-1,97	mm
Thermal expansion of steel vessel $\Delta I_{vessel} = \alpha_3 * \Delta t_3 * I_0 = 0.000012 *$	102		1070	_	4.6	
2-vessel = 03 2/3 (0 = 0,000012	155		1570	-	4,0	
Conclusion						
Conclusion of dense layer						
Total expansion of dense layer		∆l _{dense}		=	10,7	mm
Space for compensation of expansion		∆comp		-	16,5	mm
$\triangle comp = exp_2 + \Delta PLC_2 + \Delta I_{vectal}$		∆l _{dense}	>	∆comp		ок
Conclusion of insulation layer						
		ΔI _{Insul}			2.6	mm
Total expansion of dense layer		Δcomp		_		mm
Total expansion of dense layer Space for compensation of expansion						
Total expansion of dense layer Space for compensation of expansion Δcomp = exp ₂ + ΔPLC ₂ + Δt _{recold}		Δl _{insul}		Δcomp		ок

OTHERS

- Article in magazine Cement review in 2014 and 2015
 - Monolithic lining
 - Suspended refractory ceiling

- Delivery of refractories in 2016: 1050t
- Delivery of Refractories in 2017: 1250t
- Delivery of Refractories in 2018: 950t
- Delivery of Refractories in 2019: foreseen 1400t